Functional networks as a new data mining predictive paradigm to predict permeability in a carbonate reservoir
نویسندگان
چکیده
Permeability prediction has been a challenge to reservoir engineers due to the lack of tools that measure it directly. The most reliable data of permeability obtained from laboratory measurements on cores do not provide a continuous profile along the depth of the formation. Recently, researchers utilized statistical regression, neural networks, and fuzzy logic to estimate both permeability and porosity from well logs. Unfortunately, due to both uncertainty and imprecision, the developed predictive modelings are less accurate compared to laboratory experimental core data. This paper presents functional networks as a novel approach to forecast permeability using well logs in a carbonate reservoir. The new intelligence paradigm helps to overcome the most common limitations of the existing modeling techniques in statistics, data mining, machine learning, and artificial intelligence communities. To demonstrate the usefulness of the functional networks modeling strategy, we briefly describe its learning algorithm through simple distinct examples. Comparative studies were carried out using real-life industry wireline logs to compare the performance of the new framework with the most popular modeling schemes, such as linear/nonlinear regression, neural networks, and fuzzy logic inference systems. The results show that the performance of functional networks (separable and generalized associativity) architecture with polynomial basis is accurate, reliable, and outperforms most of the existing predictive data mining modeling approaches. Future work can be achieved using different structure of functional networks with different basis, interaction terms, ensemble and hybrid strategies, different clustering, and outlier identification techniques within different oil and gas challenge problems, namely, 3D passive seismic, identification of lithofacies types, history matching, rock mechanics, viscosity, risk assessment, and reservoir characterization. 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
A committee machine approach for predicting permeability from well log data: a case study from a heterogeneous carbonate reservoir, Balal oil Field, Persian Gulf
Permeability prediction problem has been examined using several methods such as empirical formulas, regression analysis and intelligent systems especially neural networks and fuzzy logic. This study proposes an improved and novel model for predicting permeability from conventional well log data. The methodology is integration of empirical formulas, multiple regression and neuro-fuzzy in a commi...
متن کاملEvaluating Different Approaches to Permeability Prediction in a Carbonate Reservoir
Permeability can be directly measured using cores taken from the reservoir in the laboratory. Due to high cost associated with coring, cores are available in a limited number of wells in a field. Many empirical models, statistical methods, and intelligent techniques were suggested to predict permeability in un-cored wells from easy-to-obtain and frequent data such as wireline logs. The main obj...
متن کاملA Physical-based Model of Permeability/Porosity Relationship for the Rock Data of Iran Southern Carbonate Reservoirs
The prediction of porosity is achieved by using available core and log data; however, the estimation of permeability is limited to the scare core data. Hence, porosity and saturation data through the framework of flow units can be used to make an estimation of reservoir permeability. The purpose of this study is to predict the permeability of a carbonate gas reservoir by using physical-based em...
متن کاملPermeability estimation from the joint use of stoneley wave velocity and support vector machine neural networks: a case study of the Cheshmeh Khush Field, South Iran
Accurate permeability estimation has always been a concern in determining flow units, assigning appropriate capillary pressure andrelative permeability curves to reservoir rock types, geological modeling, and dynamic simulation.Acoustic method can be used as analternative and effective tool for permeability determination. In this study, a four-step approach is proposed for permeability estimati...
متن کاملAssessment of Clustering Methods for Predicting Permeability in a Heterogeneous Carbonate Reservoir
Permeability, the ability of rocks to flow hydrocarbons, is directly determined from core. Due to high cost associated with coring, many techniques have been suggested to predict permeability from the easy-to-obtain and frequent properties of reservoirs such as log derived porosity. This study was carried out to put clustering methods (dynamic clustering (DC), ascending hierarchical clustering ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Expert Syst. Appl.
دوره 39 شماره
صفحات -
تاریخ انتشار 2012